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Abstract
We study the scaling properties of polymer macromolecules in media with
defects that are correlated or belong to some porous or spongelike structure. To
this end, we use the model of self-avoiding walks on a randomly diluted lattice
with long-range-correlated quenched disorder. We apply the field-theoretical
renormalization group refined by the resummation technique and perform
calculations directly in three dimensions up to the two-loop approximation. The
scaling behaviour of polymers in media with long-range-correlated disorder is
found to be governed by a new set of exponents.

Long flexible polymer chains in good solvent possess a number of properties that are universal,
i.e. independent of the details of their chemical microstructure. These universal scaling
properties are perfectly described within a model of self-avoiding walks (SAWs) on a regular
lattice [1,2]. The limit of a SAW with an infinite number of steps may be mapped to a formal
m → 0 limit of the m-vector model at its critical point. In particular, the average square
end-to-end distance 〈R2〉, and the number of configurations ZN of a SAW with N steps on a
regular lattice, scale in the asymptotic limit N → ∞ as

〈R2〉 ∼ N2ν, ZN ∼ zNNγ−1 (1)

where ν and γ are the universal correlation length and susceptibility exponents for the m = 0
model that only depend on the space dimensionality d, and z is a nonuniversal fugacity. For
d = 3 the exponents read [3] ν = 0.5882 ± 0.0011 and γ = 1.1596 ± 0.0020.

In this study, we are interested in the scaling laws that govern the behaviour of
polymers in disordered media when the defects are correlated or belong to some porous
or spongelike structure. In magnetic systems, the presence of pointlike uncorrelated (or
short-range-correlated) quenched disorder has a nontrivial effect on their critical behaviour
only if the specific heat critical exponent α is positive [4] (the so-called Harris criterion).
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However, although the critical exponent α of a SAW on a d = 3 pure lattice is
positive (α(d = 3) = 0.235 ± 0.003) [3], a weak quenched short-range-correlated disorder
does not alter the SAW critical exponents. This statement was proven by Harris [5] and
confirmed later by renormalization group (RG) results [6].

Weinrib and Halperin [7] introduced a model with ‘random-temperature’ disorder, arising
from a small density of impurities, causing random variations in the local phase transition
temperature Tc(�x). The fluctuations in Tc(�x) are characterized by a correlation function,
that falls off according to a power law: ∼x−a at large distances x, where a is a constant.
The m-vector model of this type of disorder has been studied by two complementary RG
approaches: first using a double expansion in the parameters ε = 4−d, δ = 4−a in the linear
approximation [7], and more recently in the fixed d, a technique for d = 3 and different values
of correlation parameter a in a two-loop approximation [8]. Both approaches qualitatively
confirmed that long-range-correlated disorder leads to new universality behaviour for these
magnetic systems.

In a previous publication [9] we have addressed the same question for the asymptotic
behaviour of polymers. Our linear approximation of the double ε, δ-expansion indicates
qualitatively the existence of a new RG fixed point for long-range-correlated disorder. Here, we
present a two-loop approximation using the fixed a, d technique that confirms the qualitative
picture and results in physically meaningful values for the fixed point and exponents. The
critical behaviour of a SAW in a medium with long-range-correlated disorder is described by
an effective Hamiltonian with two couplings, that is derived by the replica method for averaging
the quenched disorder. It reads [9]

Heff =
∑

k

n∑

α

(µ2
0 + k2)( �φα

k )2 +
u0

4!
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α

∑
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k3
�φβ

k4
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(2)

Here, �φα
k is the α replica of the n-fold replicated m-component vector field for d-dimensional

momentum k; u0 > 0, w0 > 0 and µ0 are respectively the bare coupling constants and the bare
mass; both the polymer (m = 0) and the replica (n = 0) limits are implied. The coefficient of
w0 describes the effective coupling of replicas due to the disorder. For small k, the functionf (k)

behaves as f (k) = |k|a−d , which stems from the Fourier transform of the large-x behaviour
(x−a) of the disorder correlations. Power counting implies that this term is irrelevant in the RG
sense for a � d . The above-mentioned linear ε–δ expansion finds the stable RG fixed point
in this unphysical region. A similar picture is found in the linear ε, δ approximation also for
the model of a magnet with long-range-correlated disorder [7,9]. In the latter case, the reason
could be traced to the complicated symmetry of the effective Hamiltonian and the unknown
asymptotic properties of the resulting series [8,11]. Our present approach, which relies on the
higher-order (two-loop) perturbation theory expansions refined by the resummation technique,
yields physically meaningful results for a < d. In the field-theoretical RG approach [2], the
change of the renormalized couplings u, w under renormalization defines a flow in parametric
space, governed by corresponding β-functions βu(u, w), βw(u, w). The fixed points u∗, w∗ of
this flow are the solutions of the system of equations βu(u

∗, w∗) = 0, βw(u∗, w∗) = 0. Using
the notation v1, v2 for the couplings u, w the fixed point is defined as stable if the stability
matrix Bij = ∂βvi

/∂vj eigenvalues λi have positive real parts.
The RG functions of the model in equation (2), as listed in [9], are possibly divergent series

with zero radius of convergence [10], familiar to the theory of critical phenomena. If the series
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Figure 1. The resummed β-functions in the two-loop approximation for d = 3. (a), (b) the
Chisholm–Borel resummation; (c), (d) the subsequent resummation. (a), (c) a = 2.9; (b), (d) a =
2.7. The LR stable fixed point is shown by an open square.

are asymptotic, then the situation is, at least in principle, controllable: in this case a good
estimate for the sum of the series is obtained by keeping a certain number of the first terms
(‘optimal truncation’) or applying an appropriate Borel resummation procedure [10].

However, there is no proof of the Borel summability of the RG series for disordered
models [11]. Moreover, their summability has been seriously questioned recently [12, 13].
Nonetheless the Borel-based resummation technique applied to the RG series of disordered
models usually provides reliable data [11]. Here, we apply several methods of resummation
in order to obtain quantitative results for the problem under consideration and to check the
stability of these results. A simple two-variable Chisholm–Borel resummation technique [14]
turns out to be the most effective one for our problem. Applying it to the two-loop series for
the RG β-functions we obtain for a < 3 together with the familiar fixed points describing
Gaussian chains (u∗ = w∗ = 0) and SAWs in media without defects (u∗ �= 0, w∗ = 0)
the stable ‘long-range’ (LR) fixed point u∗ �= 0, w∗ �= 0 describing polymers in long-range-
correlated disorder (see the left-hand column in figure 1). This leads to the conclusion that,
for certain values of a < d the polymer scaling is influenced by disorder. Then, at some value
a = amarg the LR fixed point becomes unstable, which in its turn suggests the collapse of the
polymer chain in a medium with too strong correlated disorder.

Secondly, we apply the method of subsequent resummation, developed in the context of
the d = 0-dimensional diluted Ising model in [13] and successfully used for the d = 3 case
in [15]. Here, the summation is carried out first in the coupling u and subsequently in w. While
we do not expect any high accuracy from this method, as the applicability has not been proven
for our problem, again the presence of a stable fixed point LR for amarg � a < d confirms
the stability of a new type of critical behaviour (see the right-hand column of figure 1). Note,
however, that the subsequent resummation method was especially devised [15] to analyse the
behaviour of the β-functions in the vicinity of a mixed fixed point (u �= 0, w �= 0) and it does
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Figure 2. (a), (b) Fixed-point coordinates u∗, w∗, (c) exponent ν and (d) real part of λ1,2 plotted
as functions of the disorder parameter a. Circles, LR fixed-point values; squares, unperturbed
fixed-point values; lines are guides to the eye.

not allow us to analyse the full RG flow. That is why we have chosen the Chisholm–Borel
resummation method to derive numerical results in our approach.

The values of the Chisholm–Borel resummed stable fixed-point coordinates and the
stability matrix eigenvalues along with the numerical values for critical exponent ν are shown
in figure 2. Departing from the value a = d = 3 downward to 2 one notices a major increase
of the value of the coupling u, so the results are expected to be more reliable for a close to 3.
Our numerical results for the LR fixed-point values of the coupling u∗ and the exponent ν do
not extrapolate to the unperturbed fixed-point values. Moreover, the real part of the stability
eigenvalues seems to vanish near a = 2.2.

In summary, our results confirm that in a medium with long-range-correlated quenched
disorder the swelling of the polymer coil at d = 3 is governed by a distinct exponent ν that
increases when the correlation of the disorder is increased (i.e. a decreases). A crossover to
the collapse of the polymer is predicted when the correlation is too strong, i.e. a is below some
marginal value amarg � 2.
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